Samples of Allowable Supplemental Aids for STAAR Assessments

Updates from 12/2011
All Subjects: Mnemonic Devices
A mnemonic device is a learning technique that assists with memory. Only mnemonic devices that are acronyms or phrases based on an acronym should be used. The subject-specific words that the mnemonic represents are **NEVER** allowed.

- **PEMDAS**  
  ✓ Please Excuse My Dear Aunt Sally

- **DMSB**  
  ✓ Dad Mother Sister Brother

- **KPCOFGS**  
  ✓ King Phillip Came Over For Good Spaghetti
All Subjects: Mnemonic Devices

A mnemonic device is a learning technique that assists with memory. Only mnemonic devices that are acronyms or phrases based on an acronym should be used. The subject-specific words that the mnemonic represents are NEVER allowed.

Parentheses
Exponents
Multiplication
Division
Addition
Subtraction

Divide
Multiply
Subtract
Bring down

Kingdom
Phylum
Class
Order
Family
Genus
Species

Other mnemonic devices that follow the above criteria are also allowed.
All Subjects: Blank Graphic Organizers
Blank graphic organizers may be used. Blank graphic organizers should **NEVER** contain titles, words, labels, colors used as labels, pictures, acronyms, mnemonics, numbers, symbols, or variables.
All Subjects: Blank Graphic Organizers

Blank graphic organizers may be used. Blank graphic organizers should NEVER contain titles, words, labels, colors used as labels, pictures, acronyms, mnemonics, numbers, symbols, or variables.
All Subjects: Blank Graphic Organizers

Blank graphic organizers may be used. Blank graphic organizers should **NEVER** contain titles, words, labels, colors used as labels, pictures, acronyms, mnemonics, numbers, symbols, or variables.
Mathematics: Addition Charts

Addition charts may be used. The addition chart must be a grid used to find the sum, not a list of addition facts. Each axis may be numbered up to 9, but no higher than 9. Indicating special numbers (e.g., highlighting or circling even numbers within the body of the chart) is **NEVER** allowed.

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

**Correct example:**

1 + 1 = 2  
2 + 2 = 4  
3 + 3 = 6  
4 + 4 = 8  
5 + 5 = 10

**Incorrect example:**

1 + 1 = 2  
2 + 2 = 4  
3 + 3 = 6  
4 + 4 = 8  
5 + 5 = 10  
6 + 6 = 12  
7 + 7 = 14  
8 + 8 = 16  
9 + 9 = 18  
10 + 10 = 20
Mathematics: Multiplication Charts

Multiplication charts may be used. The multiplication chart must be a grid used to find the product, not a list of multiplication facts. Each axis may be numbered up to 12, but no higher than 12. Indicating special numbers (e.g., highlighting or circling perfect squares within the body of the chart) is NEVER allowed.

Update as of 1/2/2011—it is allowable for the Multiplication Chart to have the multiplication symbol in the upper corner to indicate the operation.
Mathematics: 100 Chart

A 100 chart may be used. Indicating special numbers (e.g., highlighting or circling prime numbers within the body of the chart) is **NEVER** allowed.

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

[Table with correct and incorrect highlighting of prime numbers]
Mathematics: Place Value Chart

A place value chart may be used. Words for place value labels and a decimal point are allowed only if they are grade-appropriate. Including numbers as specific examples is NEVER allowed.
Mathematics: Pictorial Models of Fractions

Pictorial models of fraction bars or fraction circles may be used. The models may be labeled to show each individual fraction, but they should **NEVER** show equivalencies or a cumulative sequence.

![Correct Model](correct_model.png)

![Incorrect Model](incorrect_model.png)
Mathematics: Pictorial Models of Geometric Figures

Pictorial models of one-, two-, and three-dimensional figures may be used. The figures may **NEVER** contain titles, words, labels, colors used as labels, acronyms, mnemonics, numbers, symbols, or variables.

![Diagram of geometric figures with check marks and crosses indicating correct and incorrect uses of labels and symbols.](diagram_url)
Mathematics: Pictorial Models of Geometric Figures

A pictorial model of a geometric figure may be provided in either three-dimensional form or two-dimensional form (net), but **NOT** in both forms.

**OR**

**NOT** 3-D and 2-D on the same aid
Written Composition: Grammar & Mechanics Rules

A list of grade-appropriate grammar and mechanics rules may be used. This list may **NEVER** contain any specific examples.

**Rule:** A singular subject takes a singular verb, while a plural subject takes a plural verb.

**Example:** She walks to the store alone. They walk to the mall together.

**Rule:** When I is one of the two subjects connected by either/or or neither/nor, put it second and follow it with the singular verb am.

**Example:** Neither he nor I am going to the park.

**Rule:** When either and neither are subjects, they always take singular verbs.

**Examples:** Neither of them is able to drive. Either of them is taking the bus.

**Rule:** Use a singular verb with sums of money or periods of time.

**Examples:** Two dollars is a small amount of cash. Ten years is a decade.
Written Composition: Grammar & Mechanics Rules

A list of grade-appropriate grammar and mechanics rules may be used. This list may NEVER contain any specific examples.

**PARTS OF SPEECH:**

* NOUN .......... word that names a person, place, thing, or idea
* VERB .......... word that shows action or state of being
* ADJECTIVE ...... word that tells what kind, how many, or which one
* ADVERB ........ word that tells when, where, how, or how much
* PRONOUN ...... word that takes the place of a noun or nouns
* CONJUNCTION ... word that connects words or groups of words
* PREPOSITION ... word that shows a relationship between a noun and another word in the sentence

**Parts of Speech**

NOUNS – name a person, place, thing, or idea.
Examples: teacher school recess

PRONOUNS – take the place of a noun.
Examples: he she it they

VERBS – show action or state of being.
Examples: see run read swim

ADJECTIVES – describe a noun, such as in size, color, and number.
Examples: big bike red car three girls
Science: Graphics of Scientific Concepts

Graphics of scientific concepts may be used. The graphics should **NEVER** contain titles, words, labels, colors used as labels, acronyms, mnemonics, numbers, symbols, or variables.
Science: Graphics of Scientific Concepts

Graphics of scientific concepts may be used. The graphics should **NEVER** contain titles, words, labels, colors used as labels, acronyms, mnemonics, numbers, symbols, or variables.
Science: Formula Triangles

Formula triangles representing relationships between variables may be used. Only formulas that appear on the appropriate state-supplied reference materials may be represented. The triangles may only include variables. Symbols for mathematical operations (e.g., $\times$, $\div$) are NEVER allowed.

- Work = (force)(distance)
  
  \[ W = F \times d \]

- Density = mass/volume
  
  \[ D = \frac{m}{V} \]

- **Wrong**: Work = force $\times$ distance
  
  \[ W = F \div d \]

- **Wrong**: Density = mass $\div$ volume
  
  \[ D = \frac{\text{mass}}{\text{volume}} \]
Social Studies: Blank Maps

Blank maps may be used. Blank maps should **NEVER** contain titles, words, labels, colors used a labels, pictures, acronyms, mnemonics, numbers, symbols, or variables. A student could use both physical and political world or U.S. maps.
Social Studies: Blank Maps

In addition, unlabeled maps that represent historic events may be used (e.g., an unlabeled map that represents the stages of U.S. territorial expansion).
Social Studies: Timelines
Timelines may be used if they contain only dates. Labeling the events connected with those dates in any way is NEVER allowed.